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Motivation and Contributions

▶ New task of explainable style transfer: in addition to sentence rewriting, generate
textual explanations of what attributes were changed.

▶ Novel human-AI collaboration framework, In Context-Learning with Expert Feedback
(ICLEF) (see Figure 1, Figure 2). Combines model distillation for explanation
generation [2, 4] with self-critique ability of LLMs [3, 1, 7, 8], where the critic, unlike
in prior work, is instantiated with expert demonstrations.

▶ Using ICLEF, we create for the first time datasets for explainable style transfer by
augmenting an existing formality style transfer dataset GYAFC [6] and the
neutralizing subjective bias dataset WNC [5] with textual explanations.

▶ We show that the datasets generated with the help of ICLEF, e-GYAFC and e-WNC,
are of good quality via automatic and expert evaluation, and that ICLEF-fixed
instances are preferred (see Tables 2, 1, and Table 1 for examples).

▶ Experiments that show that student models outperform teacher models in one-shot
setting and perform comparably even with few-shot teacher models in automatic (see
Figure 3) and expert evaluation (see Figure 4).

▶ We show that explanations generated by student models fine-tuned on our data
produce a better signal for the authorship attribution task (see Figure 5). We also
show that informal paraphrase from our model results in most drastic performance
reduction of AI-generated text detectors (see Figure 6).

Overview: e-GYAFC generation

 

GYAFC

Informal (original si): I would throw 
them out asap !

e-GYAFC

LLM
Paraphrase (synthetic sf):
I would dispose of them promptly.
Formal Attributes (synthetic ef):
lexical sophistication ("promptly", 
“dispose”)
absence of contractions ("I would")

Fixed Informal Attributes (iclef-ei):
textese ("asap"), colloquialism (“throw 
out”), exclamation mark

Informal Attributes (synthetic ei):
textese ("asap"), colloquialism (“throw out”), 
exclamation mark, abbreviated language ("I 
would")

       
ICLEF

LLM
critic

Expert 
Feedback

Formal (original sf): I would kick them 
out as soon as possible

Figure 1. Generating e-GYAFC: formality style transfer dataset GYAFC [6] is augmented with semi-structured natural language
explanations. The LLM generates the informal attributes of the input sentence, a formal paraphrase, and the formal attributes of
the resulting sentence. Expert feedback is incorporated via in-context learning and self-critique to refine the initial generations.

Overview: e-WNC generation

 
WNC

       
ICLEF

Biased (original sb): orbis latinus, 
integral site on romance languages

e-WNC

Paraphrase (iclef-sn):
Orbis Latinus, a comprehensive site on 
Romance languages

LLM
critic

Expert 
Feedback

Fixed Bias Attributes (iclef-eb):
Framing ("integral" implies a subjective 
evaluation of the site's importance)

Bias Attributes (synthetic eb):
Epistemological ("integral" implies that the site 
is essential or indispensable for Romance 
languages)

Neutral (original sn): orbis latinus, site 
on romance languages

LLM

Figure 2. Generating e-WNC: WNC [5] is augmented with natural language explanations. The LLM generates the bias attributes
of the input sentence and an unbiased paraphrase. Expert feedback is incorporated via in-context learning and self-critique to
refine the initial generations.

Comparison: Before and After ICLEF

Informal (si) Gen. expl. (synthetic ei) ICLEF expl. (iclef-ei)
hopefully you aren’t too old or you are
screwed.

informal greeting (”hopefully”), slang
(”screwed”), contraction (”aren’t”)

slang (”screwed”), contraction (”aren’t”)

Biased (sb) Gen. expl. (synthetic eb) ICLEF expl. (iclef-eb)
[...] a play on the title of the popular mtv
series, ”unplugged”.

Epistemological (”popular” implies that
the MTV series is universally well-liked)

Framing (”popular” is a subjective term
that implies the MTV series is widely
liked)

Table 1. Qualitative comparison of dataset instances before and after application of ICLEF.

Dataset Quality

▶ Automatic evaluation
e-GYAFC e-WNC

MIS Formality MIS Neutrality
Orig. para. 83.08 89.39 79.32 69.34
Cand. para. 81.30 98.43 85.58 72.64

Table 2. Synthetic paraphrases (generated via model distillation for e-GYAFC and e-WNC) exhibit higher quality overall in
automatic evaluation compared to original paraphrases (from GYAFC and WNC, respectively).

▶ Human Evaluation
e-GYAFC e-WNC

ei sf ef eb sn

Acceptability 87% 77% 98% 73% 74%
Preference 90% 77% - 78% 77%

Table 3. Acceptability and Preference Rates (between synthetic explanation vs. iclef explanation, and synthetic paraphrase vs.
original paraphrase form the dataset) for e-GYAFC and e-WNC.

Model Evaluation

▶ Automatic Evaluation
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Figure 3. Performance of instruction-tuned and fine-tuned models on the explainable formality style transfer task.

▶ Human EvaluationHuman Evaluation

17

Formal (Input)
If it is feasible, allow love to prevail.

Teacher (1-shot)
Formal Attributes:
conditional clause ("if it is feasible"), elevated vocabulary 
("allow love to prevail")
Informal Paraphrase:
If it’s possible, just go with love.
Informal Attributes:
simple language ("if it’s possible"), imperative form ("just go"), 
contraction ("it’s")

Student (Ours):
Formal Attributes:
precise language ("feasible"), use of conditional clause ("if it is 
feasible"), lexical sophistication ("prevail")
Informal Paraphrase:
let love win if it’s possible.
Informal Attributes:
contraction ("it’s"), casual tone ("let love win")

Figure 4. Comparison between generations from a one-shot instruction-tuned model (Vicuna, ChatGPT), and our best small
student fine-tuned model for explainable formality style transfer.

Extrinsic Evaluation

▶ Comparing informality explanations on their predictive value for authorship verification
task.

Extrinsic Evaluation: Authorship Verification

- Task: decide if two texts belong to the same 
author

- Approach: 
- Apply explainable style transfer model to 

extract informality attributes
- Use % of overlapping attributes as a score

Attribute Evidence

Colloquialism “assumed they all started off 
low!?”, “typing it out”

Textese “xx”

Informal Tone “hoping to borrow a couple of 
charging leads”

Figure 5. Using informality features for authorship detection.

▶ Informality paraphrase reduces efficacy of AI-generated text detectors.

Bonus: Interpretable Adversarial Attacks on AI-generated 
text detection

- How well can informal paraphrase 
be detected as AI-generated?

- GPT-F: Formal (AI-generated) 
- GPT-Inf: ChatGPT informal paraphrase
- Our model

Figure 6. Comparison between original ChatGPT generation, ChatGPT informal paraphrase and informal paraphrase by our
model.
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